Engineered antibody Fc variants with enhanced effector function.

نویسندگان

  • Greg A Lazar
  • Wei Dang
  • Sher Karki
  • Omid Vafa
  • Judy S Peng
  • Linus Hyun
  • Cheryl Chan
  • Helen S Chung
  • Araz Eivazi
  • Sean C Yoder
  • Jost Vielmetter
  • David F Carmichael
  • Robert J Hayes
  • Bassil I Dahiyat
چکیده

Antibody-dependent cell-mediated cytotoxicity, a key effector function for the clinical efficacy of monoclonal antibodies, is mediated primarily through a set of closely related Fcgamma receptors with both activating and inhibitory activities. By using computational design algorithms and high-throughput screening, we have engineered a series of Fc variants with optimized Fcgamma receptor affinity and specificity. The designed variants display >2 orders of magnitude enhancement of in vitro effector function, enable efficacy against cells expressing low levels of target antigen, and result in increased cytotoxicity in an in vivo preclinical model. Our engineered Fc regions offer a means for improving the next generation of therapeutic antibodies and have the potential to broaden the diversity of antigens that can be targeted for antibody-based tumor therapy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of antibody binding to FcgammaRIIa enhances macrophage phagocytosis of tumor cells.

The contribution of Fc-mediated effector functions to the therapeutic efficacy of some monoclonal antibodies has motivated efforts to enhance interactions with Fcgamma receptors (FcgammaR). Although an early goal has been enhanced FcgammaRIIIa binding and natural killer (NK) cell antibody-dependent cell-mediated cytotoxicity (ADCC), other relevant cell types such as macrophages are dependent on...

متن کامل

Generation of new peptide-Fc fusion proteins that mediate antibody-dependent cellular cytotoxicity against different types of cancer cells

Antibody-dependent cellular cytotoxicity (ADCC), a key effector function for the clinical effectiveness of monoclonal antibodies, is triggered by the engagement of the antibody Fc domain with the Fcγ receptors expressed by innate immune cells such as natural killer (NK) cells and macrophages. Here, we fused cancer cell-binding peptides to the Fc domain of human IgG1 to engineer novel peptide-Fc...

متن کامل

Functional optimization of agonistic antibodies to OX40 receptor with novel Fc mutations to promote antibody multimerization

Immunostimulatory receptors belonging to the tumor necrosis factor receptor (TNFR) superfamily are emerging as promising targets for cancer immunotherapies. To optimize the agonism of therapeutic antibodies to these receptors, Fc engineering of antibodies was applied to facilitate the clustering of cell surface TNFRs to activate downstream signaling pathways. One engineering strategy is to iden...

متن کامل

Engineered antibodies of IgG1/IgG3 mixed isotype with enhanced cytotoxic activities.

Enhancement of multiple effector functions of an antibody may be a promising approach for antibody therapy. We have previously reported that fucose removal from Fc-linked oligosaccharides greatly enhances antibody-dependent cellular cytotoxicity (ADCC) of therapeutic antibodies. Here, we report a unique approach to enhance complement-dependent cytotoxicity (CDC), another important effector func...

متن کامل

Novel asymmetrically engineered antibody Fc variant with superior FcγR binding affinity and specificity compared with afucosylated Fc variant

Fc engineering is a promising approach to enhance the antitumor efficacy of monoclonal antibodies (mAbs) through antibody-dependent cell-mediated cytotoxicity (ADCC). Glyco- and protein-Fc engineering have been employed to enhance FcγR binding and ADCC activity of mAbs; the drawbacks of previous approaches lie in their binding affinity to both FcγRIIIa allotypes, the ratio of activating FcγR bi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 103 11  شماره 

صفحات  -

تاریخ انتشار 2006